Inhaltsverzeichnis

1 ELEKTRO-INSTALLATION .. 4
 1.1 Allgemein .. 4
 1.2 Ausschreibungsverfahren .. 4
 1.3 Richtlinien .. 4
 1.4 Farbgebung der Kabel und Adern ... 4
 1.5 Farbgebung der Kabel und Adern in eigensicheren Stromkreisen 5

2 SCHALTSCHRANKAUFBAU UND -AUSRÜSTUNG .. 5
 2.1 Schaltschränke .. 5
 2.2 Schaltschrankaufbau und Einteilung .. 7
 2.3 Standardausrüstung der Schaltschränke ... 8
 2.4 Schaltschrankverdrahtung ... 8
 2.5 Kühlung .. 9
 2.6 NC-Komponenten ... 10
 2.7 PLC-Komponenten ... 11
 2.8 Erdung / Potentialausgleich .. 11
 2.9 Reserve ... 11
 2.10 Kabeleinführung ... 12
 2.11 Prüfvorschriften ... 12

3 BEDIENPULT .. 13
 3.1 Aufbau .. 13
 3.2 Einspeisung ... 13
 3.3 PLC-Komponenten ... 13
 3.4 Reserve .. 13

4 ANLAGENINSTALLATION ... 14
 4.1 Befestigung von Elektro- und Steuerungskomponenten ... 14
 4.2 Anlagenverdrahtung ... 14
<table>
<thead>
<tr>
<th>4.3</th>
<th>Verlegung und Kabelführung</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Schleifleitung</td>
<td>17</td>
</tr>
<tr>
<td>4.5</td>
<td>Energieführungsketten</td>
<td>17</td>
</tr>
<tr>
<td>4.6</td>
<td>Montage und Zugentlastung von Leitungen in Energieführungsketten</td>
<td>18</td>
</tr>
<tr>
<td>4.7</td>
<td>Konfektionierte Kabel</td>
<td>18</td>
</tr>
<tr>
<td>4.8</td>
<td>Anschluss von mobilen Komponenten</td>
<td>18</td>
</tr>
<tr>
<td>4.9</td>
<td>Prüfprotokolle</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>BEZEICHNUNG/ BESCHRIFTUNG</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>EMV-RICHTLINIEN</td>
<td>20</td>
</tr>
<tr>
<td>6.1</td>
<td>Grundregeln</td>
<td>20</td>
</tr>
<tr>
<td>6.2</td>
<td>Aufbaurichtlinien</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>BUSAUFBAU</td>
<td>21</td>
</tr>
<tr>
<td>7.1</td>
<td>Allgemein</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>IT-NETZWERKE</td>
<td>21</td>
</tr>
<tr>
<td>8.1</td>
<td>Allgemein</td>
<td>21</td>
</tr>
<tr>
<td>9</td>
<td>EX-BEREICH</td>
<td>21</td>
</tr>
<tr>
<td>9.1</td>
<td>Allgemein</td>
<td>21</td>
</tr>
<tr>
<td>9.2</td>
<td>Spanabsaugung</td>
<td>21</td>
</tr>
</tbody>
</table>
Freigabe:

<table>
<thead>
<tr>
<th>Änderungsstand:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Revision 6</td>
</tr>
<tr>
<td>09</td>
<td>Revision 5</td>
</tr>
<tr>
<td>08</td>
<td>Änderung Freigabemodul</td>
</tr>
<tr>
<td>07</td>
<td>Änderungen Freigabetext</td>
</tr>
<tr>
<td>06</td>
<td>Revision 4</td>
</tr>
<tr>
<td>05</td>
<td>Logoänderung</td>
</tr>
<tr>
<td>04</td>
<td>Revision 3</td>
</tr>
<tr>
<td>03</td>
<td>Revision 2</td>
</tr>
<tr>
<td>02</td>
<td>Kapitel 2.4 überarbeitet</td>
</tr>
<tr>
<td>01</td>
<td>Ersteller</td>
</tr>
</tbody>
</table>

Index | *Benennung* | *Name* | *Datum*

| 01 | Ersteller | Lerbs, Uwe | 08.09.09 |
1 Elektro-Installation

1.1 Allgemein

Für die Ergänzungen oder Änderungen der Elektro-Unterlagen ist die BN50.010 zu berücksichtigen.

Vor Beginn der Installation muss der aktuelle Stromlaufplan und die aktuellen Stücklisten von Broetje-Automation eingesehen werden!

Es ist darauf zu achten, dass die zur Installation benötigten Materialien von Broetje-Automation und auch vom Endkunden freigegeben sind!

1.2 Ausschreibungsverfahren

Beim Ausschreibungsverfahren ist darauf zu achten, dass bei fachspezifischen Fragen stets die dafür zuständigen Fachabteilungen mit einbezogen werden.

1.3 Richtlinien

Die Installation erfolgt nach:

1. aktuellen Normen
2. Richtlinien des Endkunden (nach Absprache)
3. der vorliegenden Richtlinie.

Bei Unstimmigkeiten ist die zuständige Fachabteilung zu informieren.

1.4 Farbgebung der Kabel und Adern

Die Farbkennzeichnung der Adern und Leiter erfolgt nach Vorschrift des Endkunden oder nach DIN.
Adern für Fremdspannung werden orange ausgeführt. Grau oder braun können für Spannungen außerhalb der Standardreihe (z. B. Analogsignale) benutzt werden. Farbige Ausgleichsleitungen sind durch geeignete Maßnahmen unverwechselbar zu halten (Mantelfarbe, -art, verdrillen).
Weiß darf als Einzelader nur nach vorheriger Absprache z.B. als N-Leiter für den amerikanischen Markt benutzt werden.

Der Farbenschlüssel ist auf dem Deckblatt des Stromlaufplanes dokumentiert.
1.5 Farbgebung der Kabel und Adern in eigensicheren Stromkreisen

2 Schaltschrankaufbau und -Ausrüstung

2.1 Schaltschränke

Alle Schaltschränke müssen mindestens die Schutzart IP 54 erfüllen.

Wenn es sinnvoll ist, werden Rittal Schaltschränke 2000x1200 mit 200mm Sockel eingesetzt. Um ein einheitliches Bild der Anlagen oder Teilanlagen zu erhalten, sind die Hauptschalter, Not-Halt-Schalter und die Blitzpfeile nach Zeichnung zu montieren.
Folgende Punkte sind zu beachten:

1. Der Schaltschrank ist (die Schaltschränke sind) vollständig montiert, angereiht, abgedichtet, mit Seitenwänden, Sockel, Transportösen, Türarretierung und Kühlgerät (wenn erforderlich) anzuliefern.
2. Alle erforderlichen Ausschnitte und Löcher müssen vorhanden sein.
3. Eine geschraubte Schematasche ist, vorzugsweise in der linken Tür, einzubauen.
4. Der Schaltschrank ist lackiert (auftragspezifischer Farbton).
5. Wenn erforderlich, sind EMV Bodenbleche vorhanden.
Die Türen sind mit einer Potentialausgleichsleitung über Flachband-Erder mit mindestens 16 mm² zu versehen. Bei Verwendung entsprechender Schränke kann auf eine Potentialerderung an den Bodenblechen, Seitenwänden, Rückwänden und an dem Dach verzichtet werden, wenn daran keine Betriebsmittel an- oder eingebaut sind.

2.2 Schaltschrankaufbau und Einteilung

Alle Betriebsmittel müssen frei zugänglich angeordnet werden. Der Austausch von Betriebsmitteln muss mit möglichst geringem Aufwand getätigt werden können.

Betriebsmittel müssen so verdrahtet werden, dass sie angemessen verschoben werden können. Steuer- und Lastleitungen sollten möglichst getrennt verlegt werden.

Wärmeerzeugende Bauteile sind vorzugsweise im oberen Schrankbereich anzubringen. Steckkartenhalter müssen senkrecht eingebaut werden.

Einbauten in die Türen, außer von außen zugänglichen Bediengeräte und Steckdosen, sind nur nach vorheriger Rücksprache mit Broetje-Automation erlaubt.

Für den Aufbau von Betriebsmitteln, die mit Schrauben >M4 auf der Montageplatte befestigt werden, sind Einziehmutter vorzusehen.
2.3 Standardausrüstung der Schaltschränke

Grundsätzlich sind alle Schaltschränke mit folgenden Teilen auszurüsten:

1. Halogenfreie Verdrahtungskanäle mit Drahthalteklammern
2. Halogenfreie, feindrahtige Einzeladern (Abweichungen bei USA Aufträgen, dann in UL Norm)
3. Weidmüller Verdrahtungsmaterial (Klemmen, Klemmenleistenbezeichnungen, Endwinkel usw.)
 4. Bis 6mm² sind nur schraubenlose Zugfederklemmen zugelassen. (ab 10 mm² Schraubklemmen oder Direktanschluss).
5. Klemmen > 50 mm² sind direkt auf die Montageplatte zu montieren.
8. Typenschild

Wenn bei geöffneter Schaltschranktür der Berührungsschutz nicht gewährleistet ist, muss zusätzlicher Berührungsschutz vorgesehen werden.

2.4 Schaltschrankverdrahtung

Die Herstellerrichtlinien sind grundsätzlich zu beachten.

Bei der Schaltschrankverdrahtung muss die vorgegebene Verdrahtungsreihenfolge des Stromlaufplans eingehalten werden. Ein ausreichender PE-Anschluss ist an allen lösbaren Metallteilen im bzw. am Schaltschrank vorzusehen. Alle Schutzleiter sind grundsätzlich anzuschließen.

Drehmomentangaben aus der Bauteildokumentation des Herstellers müssen eingehalten werden.

Mindestquerschnitte:

<table>
<thead>
<tr>
<th>Leitungstyp</th>
<th>Mindestquerschnitt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steuerleitungen</td>
<td>0,75 mm²</td>
</tr>
<tr>
<td>Hauptstromkreise</td>
<td>1,5 mm²</td>
</tr>
<tr>
<td>Datenleitungen</td>
<td>0,34 mm²</td>
</tr>
<tr>
<td>Messleitungen</td>
<td>0,34 mm²</td>
</tr>
<tr>
<td>Geberleitung</td>
<td>0,14/0,25 mm²</td>
</tr>
</tbody>
</table>

Stromkreise für Servicesteckdosen, Licht, Unterspannungseinrichtungen, Messeinrichtungen u. a., die vor dem Hauptschalter abgenommen werden, sind getrennt mit gelber Mantelleitung zu installieren und dauerhaft mit einem Schild zu kennzeichnen.
Nach Rücksprache sind gelbe Einzeladern evtl. auch möglich.

Für die Verdrahtung sind ausschließlich feindrahtige Leitungen zugelassen. Es dürfen nur halogen- und silikonfreie Kabel und Einzeladern eingesetzt werden. Auch andere Materialien sollen soweit als möglich halogenfrei sein.

Die Kabel zwischen Frequenzumrichter und Motor müssen geschirmt sein (Siehe EMV-Richtlinie). Wenn vom Gerätehersteller nicht anders vorgeschrieben, werden für Datenleitungen geschirmte Mehraderleitungen verwendet.

2.5 Kühlung

Alle Betriebsmittel müssen ausreichenden Abstand zu den Verdrahtungskanälen haben. Die Verdrahtungskanäle dürfen maximal bis zu 70% gefüllt sein.

Wärmeerzeugende Bauteile sind vorzugsweise im oberen Schrankbereich anzubringen. Steckkartenhalter müssen senkrecht eingebaut werden.

Wenn starke Temperaturunterschiede, zum Beispiel durch NC-Antriebssteller, im Schaltschrank zu erwarten sind, sollten innerhalb des Schaltschranks Quer-Lüfter eingesetzt werden, die für eine gleichmäßige Erwärmung sorgen.

Bei der Verwendung von mehr als einem Kühlgereit sind diese zu vernetzen. Dadurch wird vermieden, dass die Kühlung von nur einem Kühlgereit erledigt wird.

Die Schaltschranktemperaturfühler sind im oberen Bereich zu montieren. Der Luftstrom zum Fühler darf nicht durch Kabelkanäle oder Geräte behindert werden.
2.6 NC-Komponenten

Die Herstellerrichtlinien sind grundsätzlich zu beachten.

Auf korrekte Schirmung und Einhaltung der EMV-Richtlinien ist zu achten.

Die Schutzleiter werden sternförmig mit ausreichendem Querschnitt an die dafür vorgesehene Klemmleiste angeschlossen z.B. ==...=F014+...-1XL1.

Die Montageplatte muss metallisch blank sein.
Auf korrekte Anzugsmomente der Schrauben ist zu achten.
Bei Reparaturarbeiten müssen die Komponenten leicht auswechselbar sein.

Leistungsführende Adern und Leitungen müssen von Steuer- und Datenleitungen getrennt verlegt werden (rückwärtige Verkabelung, siehe Kapitel „Schaltorschrankaufbau und Einteilung“).

Geräte und Klemmen, die auch nach dem Abschalten noch gefährliche Restspannung führen, sind entsprechend zu kennzeichnen (der Berührungsschutz der Geräte/Klemmen muss gewährleistet sein).

Auf ausreichende Kühlung ist zu achten, jedoch darf die kalte Luft aus den Kühlgeräten nicht direkt in die Module blasen.

Wenn für die Befestigung ein bestimmtes Lochraster erforderlich ist, müssen für spätere Erweiterungen bereits die entsprechenden Befestigungslöcher und Gewinde vorgesehen werden. Eine Erweiterung um 30% muss ohne größere Umbauten im Schalschrank möglich sein.

Bei dem Einbau von Transformatoren oder Drosseln ist darauf zu achten, dass diese eine sehr hohe Oberflächentemperatur entwickeln können. Es ist für Freiraum und evtl. für Berührungsschutz zu sorgen.

Wenn starke Temperaturunterschiede im Schalschrank zu erwarten sind, sollten innerhalb des Schalschrankes Quer-Lüfter eingesetzt werden, die für eine gleichmäßige Erwärmung sorgen.
2.7 PLC-Komponenten

Die Herstellerrichtlinien sind grundsätzlich zu beachten.

Auf korrekte Schirmung und Einhalten der EMV-Richtlinien ist zu achten.

PLC-Komponenten sind möglichst getrennt von Geräten, die Leistung schalten, zu montieren.

Wenn für die Befestigung ein bestimmtes Lochraster erforderlich ist, müssen für spätere Erweiterungen schon die entsprechenden Befestigungslöcher und Gewindegewinde vorhanden sein. Eine Erweiterung um 30% muss ohne größere Umbauten im Schaltschrank möglich sein.

Die Beschriftung muss vollständig sein.
Alle Ein- und Ausgänge müssen leicht zu finden sein. Die Betriebsmittelkennzeichen der Module müssen sichtbar sein.

2.8 Erdung / Potentialausgleich

Der Potentialausgleich der Busteilnehmer müssen nach Herstellerangaben angeschlossen werden.

2.9 Reserve

Es ist generell erforderlich, dass der Schaltschrank in allen Bereichen um 30% erweitert werden kann.
2.10 Kabeleinführung

Als Kabeleinführung in großen Schaltschränken haben sich die als Zubehör erhältlichen EMV-Bodenbleche bewährt.

Es ist auf genügend Freiraum für die Einführung der Kabel zu achten. Im Bereich der Kabeleinführung dürfen keine weiteren Bauteile eingebaut sein.

Wenn nichts anders angegeben ist, muss Schutzart IP54 eingehalten werden.

2.11 Prüfvorschriften

Der Schaltschrank wird folgenden Prüfungen unterzogen:

1. Broetje-Automation Begleitcheckliste
2. Prüfung der Verdrahtung auf Richtigkeit (Potenziale, Steckverbinder, Klemmenleisten,....)
3. Schutzleitermessung (Prüfprotokoll nach VDE 0113 / EN60204-1 / IEC 204-1)
4. Isolationsmessung der Hauptstromkreise (Prüfprotokoll nach VDE 0113 / EN60204-1 / IEC 204-1)
5. Alle einstellbaren Schutzorgane werden auf die korrekten Werte eingestellt.
3 Bedienpult

3.1 Aufbau

3.2 Einspeisung

Die Spannungsversorgung der Bedienpulte erfolgt immer mit einem 6-poligen Steckverbinder mit folgender Belegung:

- Ader 1-3: 3 x 400V Versorgung 24V Netzteil
- Ader 4: 1 x 230V oder 110V (Netzspannung des Endkunden) Servicesteckdosen und Beleuchtung
- Ader 5: 1 x 230V Geräteversorgung (wenn erforderlich)
- Ader 6: N-Leiter
- Ader PE: PE

3.3 PLC-Komponenten

Für die PLC-Ein- und Ausgänge des Bedienpults ist immer ein eigener Busteilnehmer, vorhanden, der nicht für andere Funktionen verwendet werden darf. Sollte eine andere Funktion erforderlich sein, ist dies vorher mit Broetje-Automation abzustimmen.

3.4 Reserve

Es ist generell erforderlich das im Bedienpult Platzreserven von 30% für zukünftige Erweiterungen vorhanden sind.
4 Anlageninstallation

4.1 Befestigung von Elektro- und Steuerungskomponenten

Alle Elektro- und Steuerungskomponenten werden ausschließlich mit den vom jeweiligen Hersteller oder dem Handel angebotenen Möglichkeiten zur Befestigung angebracht. NOT-HALT-Schalter sind so anzubringen, dass ein versehentliches Betätigen weitgehend ausgeschlossen ist.

4.2 Anlagenverdrahtung

Zur Anlagenverdrahtung wird flexibles Nummernkabel verwendet.

Wenn vom Gerätehersteller nichts anders vorgeschrieben ist, werden für Datenleitungen geschirmte Mehraderleitungen verwendet.

Eine Querschnittsanpassung darf nicht durch Adervervielfältigung erfolgen. Für Einspeisungen kann in Abstimmung eine andere Entscheidung getroffen werden.

Leitungen, die an bewegte Teile der Anlage angeschlossen sind, müssen hochflexibel sein. In Hängeschlepps (Kabelwagenanlagen) ist nach Erfordernis Ölflex - Flachleitung oder geschirrte Flachleitung zu verwenden. Werden in begründeten Fällen Rundkabel eingesetzt, so ist ein Nachweis über die mechanische Eignung zu erbringen.

Die Schutzleiter sind eindeutig in Übereinstimmung mit dem E-Plan zu Kennzeichnung.
4.3 Verlegung und Kabelführung

In Anschlusskästen von Betriebsmitteln dürfen nur die dazugehörigen Klemmen untergebracht sein. Andere Leitungen dürfen nicht angeschlossen oder durchgeschleift werden.

Das Kapitel EMV-Richtlinien ist zu beachten.

Bauten, die ortsveränderlich sind, oder bei Wartungsarbeiten demontiert werden, sind mit Steckvorrichtungen anzuschließen. Werden zum Öffnen der Betriebsmittel die Anschlusskabel bewegt, sind diese immer flexibel auszuführen.

PE-Adern (Schutzleiter) sind grundsätzlich anzuschließen.

Alle Kabel sind so zu verlegen, dass Sie ausreichend vor Beschädigungen geschützt sind.

Leitungen werden in verzinkten Metallkabelkanälen oder Kunststoffschutzrohren verlegt. Diese dürfen maximal bis zu 70% gefüllt sein. Schlüche sind nur nach vorheriger Genehmigung zu verwenden.

In feuergefährdeten Bereichen ist Stahlanzembror oder Metallschlauch zu verwenden. Wandausleger und Hängestiele müssen für maximale Bahnbelastung ausgelegt werden.

Statt der Verwendung mehrerer paralleler Rohre oder Schlüche, sind Kabelkanäle vorzuziehen.

Alle Rohrenden müssen mit Endkappen / Tüllen versehen werden. Abzweiger, Winkel und Ecken sind mit abgeschrägteten Ecken (45°-Winkel) oder rund einzusetzen.
Bei Kabelaustritten sind die Rohre immer zu trennen. Ein seitliches Austreten durch gebohrte Löcher ist nicht zulässig. Um ein Nachrüsten zu erleichtern, sollten die Trennstellen zwischen 50 und 100 mm breit sein.

Kabelrohre werden mit Klemmschellen befestigt. Bei mechanisch belasteten Rohren, Schlauchübergängen oder Schläuchen sind geschlossene Schellen zu verwenden.

Übergänge zwischen Kanal und Rohr sowie Rohr und Schlauch sind mit geeigneten Verbindungsteilen herzustellen.

Alle Kabelkanalenden oder Einschnitte in Kanal oder Deckel müssen mit Kantenschutz versehen oder umgebördelt werden. Schrauben, die in die Kabelkanäle ragen, müssen abgerundet oder anderweitig mit Kabelschutz versehen sein.

Kabelkanäle müssen grundsätzlich abgedeckt werden, es sei denn, sie sind durch die Maschinenkonstruktion so geschützt, dass sie nicht verschmutzen. Alle anderen müssen abgedeckt werden.

Alle Geräte wie Steckdosen, Schalter, Leuchten und Bediengeräte sind mit Kabelverschraubungen oder Steckverbindungen auszurüsten und mit den Rohren oder Schläuchen zu verbinden.

Sollte der Hersteller Würgenippel o. ä. vorgesehen haben, sind geeignete Maßnahmen gegen das Herausziehen der Kabel zu treffen. In senkrechten Kabelkanälen sind mindestens in Abständen von 1,5 m wieder verschließbare Kabelbinder als Zugentlastung einzusetzen.

Durchbrüche in Metallböden und in Hohlprofilen, die zur Kabelverlegung genutzt werden, sind sauber zu entgraten und mit Kantenschutz zu versehen.

Werden Leitungen durch den Metallboden geführt, sind diese im Fußbereich abzudecken (trittsichere Ausführung). Hohlprofile, durch die Kabel geführt werden, sind mit größeren verschraubbaren Öffnungen für Servicearbeiten auszuführen.

Scharfe Kabelbinderenden sind zu entgraten.
4.4 Schleifleitung

4.5 Energiführungsketten

Für die Versorgung beweglicher Anlagenteile sind nach Erfordernis Energiführungsketten, Flexschläuche oder Flachleitungshängeschlepp zu verwenden. Wickelschläuche sind nicht zugelassen.

Alle Metallteile der beweglichen Kabelführung sind mit einem Potentialausgleich zu versehen.

Bei Hängeschlepp ist eine Kopffreiheit von 2 m zu gewährleisten.

Es sind nur Energiführungsketten einzusetzen, die zur leichteren Um- bzw. Nachrüstung geöffnet werden können.

Es ist Platz für alle benötigten Medienversorgungen vorzusehen. Zusätzlich ist in allen Kabelschlepp eine Reserve von mindestens 25 % vorzusehen.

Alle Kabelschleppketten sind mit Trennstegen für Kabel-Gruppen (Steuerleitungen, Leistungskabel, Pneumatikschläuche und Hydraulikschläuche) und für Leitungen verschiedener Durchmesser auszuführen.

Alle Leitungen die durch einen Kabelschlepp geführt werden, sind als hochflexible Schleppkettenleitungen für 3-Schichtbetrieb (24h) auszuführen. Die Leitungen müssen lose nebeneinander zwischen den Kettenstegen liegen. Sie sind möglichst einzeln und in der neutralen Zone der Kette anzuordnen.

| Flachleitungen, die nebeneinander oder horizontal zueinander liegen, sind grundsätzlich mit Trennstegen zu trennen. Flach- und Rundleitungen sind in einer Energiekette grundsätzlich getrennt zu verlegen. |

Damit sich die Leitungen frei bewegen können, ist für jede ein Freiraum von 10 % des Leitungsdurchmessers vorzusehen.

Bei Mehrlagenverlegung von Schleppkammern ist darauf zu achten, dass auch in der Krümmung für jede Leitung ein entsprechender Freiraum vorhanden ist.

Die Verlegung aller Leitungen muss drallfrei erfolgen. Alle Leitungen müssen vor dem Einziehen abgerollt ausgelegt werden und dürfen nicht in Schlingen abgehoben werden.
4.6 Montage und Zugentlastung von Leitungen in Energieführungsketten

Grundsätzlich gelten beim Verlegen und Montieren von Energieführungsketten die Herstellerbestimmungen.

Alle Leitungen müssen am Festpunkt und am Mitnehmer fest verschellt werden. Hierbei ist zu beachten, dass die Pressung nur großflächig am Außenmantel erfolgen darf. Die Klemmung muss so ausgeführt werden, dass die Einzeladern in Kabeln nicht gequetscht werden, eine Verschiebung der Leitungen jedoch nicht mehr möglich ist.

Als Richtlinie für den Abstand zwischen dem Ende der Biegebewegung und der Befestigung wird im Allgemein das 10-30-fache des Kabeldurchmessers empfohlen.

Die Leitungen dürfen in der Kette nicht befestigt oder zusammengebunden werden. Sie müssen innerhalb des gesamten Bewegungsbereichs der Kette, beweglich sein.

Vor und hinter beweglichen Überleitungen sind Steckverbindungen in Industrieausführung zu setzen (Geber und Messleitungen sind hiervon ausgenommen). Diese entfallen nur, wenn sich die Endpunkte in der Nähe der Überleitung befinden und die Kabel leicht zu wechseln sind.

4.7 Konfektionierte Kabel

Der Einsatz von vorkonfektionierten Kabeln ist dem Selbstkonfektionieren, wenn möglich, vorzuziehen.

4.8 Anschluss von mobilen Komponenten

Mobile Komponenten wie zum Beispiel Handbedienungen oder Zustimmtaster, sind mit mindestens feindrahtiger PUR Leitung in signalorange anzuschließen. Die Kableineführungen sind mit Knickschutztüllen zu versehen.

4.9 Prüfprotokolle

Folgende Prüfprotokolle sind der Doku beizulegen:

1. Schutzleitermessung
 (Prüfprotokoll nach VDE 0113 / EN60204-1 / IEC 204-1)
2. Isolationsmessung der Hauptstromkreise
 (Prüfprotokoll nach VDE 0113 / EN60204-1 / IEC 204-1)
5 Bezeichnung/ Beschriftung

Beschriftungen müssen, auch wenn die Anlage von verschiedenen Herstellern geliefert wird, einheitlich ausgeführt werden.

Alle Geräte müssen übereinstimmend mit dem Stromlaufplan dauerhaft gekennzeichnet werden. Auf der Montageplatte sind weiße Schilder mit schwarzer Schrift anzubringen.

Vorzugsweise sollten folgende Kennzeichnungssysteme verwendet werden:

Bezeichnungsschiene SCHS 2 von Weidmüller, oder

Phoenix Kennzeichnungsprofil für Marker, PB-ZB METER und Phoenix Marker für Klemmenbreite 16mm UC-TM 16

Das Gerät ist mit einem gelben Aufkleber (z.B. Phoenix EML 20x8 oder Weidmüller THM MT 30x-20/8), Schrift schwarz, zu bekleben.

Klemmenleisten werden deutlich gekennzeichnet (z.B. Weidmüller Verbindungsmarkierer WAD 8 MC oder Klemmenmarkierer EM 8/30).

PLC-Eingänge und Ausgänge werden laut Schema bezeichnet.

Antriebssteller werden zusätzlich mit der Funktionsbezeichnung versehen (z.B. Achsname).

Bauteile, die bei abgeschaltetem Hauptschalter unter Spannung stehen, sind deutlich mit Warn-Aufkleber „Spannung vor dem Hauptschalter“ zu kennzeichnen.

Wenn Bezeichnungen von Klemmleisten, die in einem Klemmenkasten eingebaut sind, von der Bezeichnung des Klemmenkastens abweichen, sind diese auf dem Bezeichnungsschild des Klemmenkastens mit aufzuführen.

Alle Leitungen sind mit einer Start- und Zielbezeichnung zu kennzeichnen. (z.B. W=1+LD-240XL1/-243S2)

Als Bezeichnungsmaterial hierfür werden Kabelmarker vom Hersteller Phoenix verwendet werden:

Typ: Kabelmarker KMK 2, 1005266
Betriebsmittel außerhalb von Schaltschränken und Klemmenkästen werden mit geschraubten oder genieteten Alumini umschildern, in der Farbe natur mit schwarzem Aufdruck, beschriftet.
Wenn der vorhandene Aufbau das montieren dieser Schilder nicht zulässt, können nach Rücksprache auch Klebeschilder verwendet werden. Hierbei ist sicherzustellen, dass die Klebeschilder abriebfest geklebt werden, und auch die Schrift durch in der Anlage verwendete Reiniger, Schmierstoffe und andere Chemikalien, nicht unleserlich wird. (z.B. Phoenix Gerätemarkierung SR EMLP (27x8)R SR)

6 EMV-Richtlinien

6.1 Grundregeln

Grundsätzlich sind Herstellerangaben und EMV-Richtlinien zu beachten.

Wenn Leitungen elektronischer Steuereinheiten parallel zu Leitungen liegen, die erhebliche Einschalströme führen (z.B. in Kabeltrassen), ist durch geeignete Maßnahmen die Störsicherheit sicherzustellen.

z.B. bei:
1. Netzwerk- oder Bus Kabel
2. Steuerspannung 24V DC, Signal / Messleitungen
3. Leistungs- / Motorkabel / Stromversorgung / Beleuchtung

6.2 Aufbaurichtlinien

Die Kabel von geregelten Motoren müssen geschirmt sein.
Wenn der Hersteller nichts anderes vorschreibt, sind die Schirme beidseitig aufzulegen.

Wenn das Schirmgeflecht direkt zur Anschlussklemme geführt wird, ist ein schwarzer Isolierschlauch als Überzug zu verwenden. Das Ende des Schirms ist gegen Aufspleißung zu sichern.

Mess- Daten-, und Signalleitungen müssen getrennt von Steuer- und Leistungsleitungen verlegt werden. Der Schirm wird vom Sternpunkt her (einspeiseseitig) einseitig aufgelegt.

Bei doppeltgeschirmten Kabeln wird der äußere Schirm beidseitig aufgelegt. Der innere Schirm wird vom Sternpunkt her einseitig aufgelegt.
7 Busaufbau

7.1 Allgemein

Normen und Richtlinien zu dem verwendeten Bus sind einzuhalten.

EMV-Richtlinien sind einzuhalten.

Für die Verbindung der Leitungen sind vorzugsweise Rundstecker zu verwenden.

8 IT-Netzwerke

8.1 Allgemein

Normen und Richtlinien zu dem verwendeten Netzwerk sind einzuhalten.

EMV-Richtlinien sind einzuhalten.

Es dürfen nur für die Art des Netzwerks zugelassene Materialien verwendet werden. Die Reihenfolge der Netzwerkteilnehmer ist dem Schaltplan zu entnehmen.

Für die Verbindung der Leitungen sind vorzugsweise Rundstecker zu verwenden.

9 Ex-Bereich

9.1 Allgemein

Die Installation erfolgt nach aktuellen Normen und den Richtlinien des Endkunden.

9.2 Spanabsaugung
